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Non-equilibrium flow through a nozzle 

By P. A. BLYTHE 
Aerodynamics Division, National Physical Laboratory, Teddington, Middlesex 

(Received 12 February 1963) 

Vibrationally relaxing flow through a nozzle is examined in the case when the 
amount of energy in the lagging mode is small. It is shown that there exists a 
‘ boundary-layer ’ region in which relatively large departures from equilibrium 
occur. The position of this region is given by the type of criterion that has pre- 
viously been used to predict the onset of ‘freezing’. An analytical solution for 
the distribution of the vibrational energy in the nozzle is obtained for a particular 
nozzle geometry, and an expression for the final asymptotic ‘frozen ’ value of the 
vibrational energy far downstream is found. This asymptotic solution can be 
obtained from conditions at the ‘freezing ’ point provided a suitable boundary 
condition is applied there. 

1. Introduction 
It is well known that when a gas is disturbed from a state of equilibrium the 

re-distribution of energy among the various modes is not instantaneous. Much 
work has been done on examining the effects that such time lags can have on 
various flows. In  recent years considerable attention has been given to non- 
equilibrium expanding flows, especially the quasi-one-dimensional flow through 
a nozzle (see, for example, Bray 1959; Freeman 1959; Hall & Russo 1959; and 
Stollery & Smith 1962). Such flows are of considerable practical importance with 
regard to the performance of hypersonic wind tunnels, rocket nozzles, etc. In 
particular, in this report vibrationally relaxing flow through a divergent nozzle 
(as in a shock tunnel) will be considered in detail. 

The important parameter in non-equilibrium flow is the ratio of the time scale 
of the flow to the relaxation time (i.e. a time characterizing the rate of adjustment 
of the lagging mode to the ambient conditions). In  an expanding flow this 
parameter will decrease and consequently the lagging mode will findit increasingly 
difficult to adjust to its local equilibrium state. In  fact as the flow expands the 
relaxation time will become large and the energy in the lagging mode will ‘freeze 
out ’ at some constant value, greater than the equilibrium value, since the rate 
of change of energy in the lagging mode will approach zero as the relaxation time 
approaches infinity. Numerical calculations (see above references) confirm this 
general picture. They show, for dissociational or vibrational relaxation starting 
from equilibrium conditions, that the energy in the lagging mode at  first remains 
near to its equilibrium value but that at sufficiently large distances downstream 
it breaks away from the equilibrium distribution and rapidly approaches some 
final constant, ‘frozen’, value (see figure 1). From these results it appears that 
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a solution far enough upstream of the breakaway can be obtained by perturbing 
about the equilibrium solution. Downstream of the breakaway a suitable 
asymptotic solution can be constructed by including only the dominant terms in 
the rate equation (see 5 3.4). In  general such an asymptotic solution will contain 
an unknown constant which has to be determined by a suitable matching pro- 
cedure to the solution upstream of the breakaway. Bray (1959) attempted to 
do this in a very simple manner for dissociation. By a suitable qualitative argu- 
ment he obtained an equation which defined the breakaway or sudden 
‘freezing’ position. Upstream of this point the flow was assumed to be in equili- 
brium, while downstream of it the energy in the lagging mode was assumed to 
remain constant at its equilibrium value at  the ‘freezing’ point (see figure 1). 
This approximate solution was in reasonable agreement with the exact numerical 
solution. 

Distance 

FIGURE 1. Schematic representation of variation of vibrational energy in a nozzle. 

Such a solution gives no information on the detailed behaviour in the rapid 
transition region near the freezing point, and in general this behaviour must be 
known in order to determine the correct boundary condition to apply to the 
asymptotic solution. In the present paper an analytical solution for the variation 
of the energy in the lagging mode is derived for a relatively simple case, namely 
vibrational relaxation in a conical nozzle assuming that the amount of vibrational 
energyissmall and that dissociation, etc.,isnegligible. TheMachnumber ofthe flow 
is assumed to be large everywhere. It is shown that arapid transition or ‘boundary- 
layer ’ region exists in which appreciable departures from equilibrium occur. 
Upstream of this region the flow remains near to equilibrium. The position of the 
boundary-layer region is given by the type of criterion used by Bray (1959) to 
define the freezing point. The analytical solution to be presented here is valid, 
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neglecting error terms of a certain order, throughout the nozzle, and the correct 
asymptotic solution is easily found from this solution. It is shown that the 
asymptotic solution can be obtained from conditions at  the freezing point pro- 
vided a suitable boundary condition is applied there. Furthermore (see § 3.3) 
the solution contains the two limiting cases of near-equilibrium and near-frozen 
flow. 

The simplicity of the solution derived here arises from the assumption that 
the amount of vibrational energy is small, i.e. that the fraction of excited 
oscillators is small. (This technique was earlier used by Spence (1961) in discussing 
unsteady shock propagation in a relaxing gas.) In this case it is permissible to 
use a linear rate equation (Shuler 1959) and to a first approximation the flow 
variables are given by their values neglecting vibration. t These values are then 
substituted into the rate equation and a first-order linear differential equation 
with known coefficients is obtained for the local departure from equilibrium. The 
solution of this equation can be expressed as the product of a known function and 
a certain integral. The integral is a typical steepest-descents type and can be 
evaluated in the usual way. The main contribution to the integral comes from the 
region near the saddle point and it is this point that is identified with the onset 
of freezing. 

The relevant equations are written down in 9 3 and the first approximation to 
the flow variables obtained. The rate equation is solved in Q 3 and the distribution 
of the vibrational energy found for the case described above. 

2. The governing equations and the approximation scheme 
The translational and rotational degrees of freedom are assumed to be fully 

excited and in a state of local equilibrium throughout the flow. Dissociation and 
similar phenomena are assumed to be negligible. The rate equation for vibrational 
relaxation is taken to have the form 

a d  
~ = ~ ’ ( p ’ ,  T’) {S’(T’) - d}, 
at’ 

where d is the vibrational energy, 0‘ its equilibrium value corresponding to the 
local translational temperature T‘; w‘ is termed the relaxation frequency (the 
reciprocal of the relaxation time) and is a function of the density p’ and the 
temperature T‘; t’ is the time measured from some suitable datum value. Primed 
variables are in dimensional form. This rate equation can be shown to be valid 
for a system of harmonic oscillators when only a small fraction of the oscillators 
are excited (Shuler 1959), and this condition will be used here. Theoretically w’ 
takes the form 

and several expressions for 52’ exist. Here it will be assumed that sl’cc T’s. 
Although this type of variation is not in agreement with any of the theoretical 
predictions it does have the correct qualitative behaviour and furthermore it 

7 Some numerical work by Stollery & Smith (1962) has shown that this is a fair approxi- 
mation for vibrational relaxation in a diatomic gas even when the fraction of excited 
oscillators is not small though the validity of the linear rate equation is then questionable. 

W‘ = p‘B‘(T’), 
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leads to certain simplifications in the analytical solution to be presented later. 
Equation ( 1 )  is now re-written in dimensionless form as 

d a  p T S  - 
- = A- (a-a), ax U 

where all the variables have been non-dimensionalized with respect to their 
values at some suitable reference point (denoted by the suffix r,  i.e., p'/pi7 etc.) 
save for B', 3' which are non-dimensionalized with respect to RT; where R is the 
gas constant; x' is the distance measured from this point, and x = xf/l, where 1 is 
some suitable nozzle dimension; u' is the velocity, and A = lwi/u: is a representa- 
tive value of the ratio of the time scale of the flow to the time scale of the relaxa- 
tion process. A large implies that the flow is near equilibrium, while A small that 
the flow is nearly frozen (see Freeman 1959). 

For a system of harmonic oscillators the equilibrium vibrational energy is 
given by 

where 0' is the characteristic temperature of vibration. Let 6 = 8'/Ti, so that the 
above equation can be written in dimensionless form as 

and since it is assumed that the fraction of excited oscillators is small, 8 B 1, and 

B z Be-*iT. (3 b )  
- 

The equations governing the quasi-one-dimensional flow through the nozzle 
can be written in non-dimensional form as 

puA = 1, (4) 

and the equation of state is p =pT.  (7)  

Here A = A'/A; where A' is the local cross-sectional area a t  any station X I ,  p is 
the pressure, y, is the ratio of the specific heats neglecting vibration, and m is the 
Mach number based on the frozen speed of sound J(y, RT'). Note that the above 
equations are equivalent to those governing the quasi-one-dimensional flow, with 
heating, of a perfect gas (Johannesen 1961). 

Under the assumption that a< 1, the energy equation ( 6 )  becomes to a first 

( 8 )  
approximation 

T++(y , -1)m,2u2 = 1++(ya- l )m,2 .  

(This result would also be true if a? - a was small everywhere compared with 
T+Q(y,- 1)m,"u2.) This equation, together with equations (4), ( 5 )  and (7 ) ,  

9 Fluid Mech. 17 
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governs the isentropic quasi-one-dimensional flow of a perfect gas. The solution 
to this set of equations is well known (see, for example, Shapiro 1953) and can be 

In order to compute the first approximation to the vibrational energy distribution 
these expressions for p, T ,  etc., are substituted into ( 2 )  and the resulting first- 
order linear differential equation integrated. This type of approximation scheme 
has been carried out numerically by Stollery & Smith (1962) for a particular 
nozzle geometry. Their results show that the vibrational energy follows the 
equilibrium distribution fairly closely at  first but eventually breaks away and 
rapidly approaches some final asymptotic (non-zero) value. This picture is in 
qualitative agreement with the results of the numerical solutions obtained by 
Bray (1959), Freeman (1959), and Hall & Russo (1959) for dissociation. In  the 
next section it will be shown that this type of behaviour can be deduced analyti- 
cally from the rate equation and furthermore that an analytical solution for the 
vibrational energy distribution can be obtained. 

3. Vibrational energy distribution 
3.1. Integration of the rate equation 

It is more convenient to solve equation (2) for the departure from equilibrium 
e = u - u rather than for cr. To this approximation, p ,  T,  u, and 'i7 are known 
functions of m, and equation (2) is re-written 

- 

where 

and u, p, and T are given by equations (9), (10) and (1  1) .  F ( m )  is a known function 
of m for a given nozzle shape A(x ) ,  since dxldm can be determined from (12). It 
will be assumed that at some initial station denoted by the suffix o (which may or 
may not coincide with the station r )  the flow is in equilibrium, i.e. e = 0 at m = m,. 
Hence, from equation (13) 

e = jrn mo (-g) (exp/~AF(w)dw) dv, 
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where v, w are dummy variables. Using (3  b)  for 0 gives 

where 

8 = exp - A  F(w)  dw g(v) exp [-Of ( v ) ]  dv, 1 S” 11: 

For Of large, except perhaps in isolated regions where f is a minimum, this integral 
is of the steepest-descents type (Jeffreys & Jeffreys 1946, p. 472). The maximum 
contribution to the integral will come from the neighbourhood of f ‘  = 0 (the 
saddle point). Upstream of this region the integrand and the integral are relatively 
small. In  the region of the saddle point both the integrand and the integral 
increase rapidly. Downstream of this region the integrand decreases and the 
integral tends to some constant (non-zero) value. These statements will be 
expressed more rigorously below when a particular case is considered in detail. 
However, this behaviour is precisely what has been found in the numerical 
solutions and the condition f ’  = 0 corresponds to the onset of the freezing, or 
breaking away from the equilibrium distribution, that is observed in these 
solutions. 

The condition f‘ = 0 is satisfied at  the point where 

which is the same type of criterion as that derived by Bray (1959) by qualitative 
arguments for the position of freezing for dissociational relaxation in a nozzle. 
Note that (16) is a general result for a rate equation of the form (1) provided 
P(m) is modified according to the temperature dependence used for fi’(T’). 

A criterion equivalent to that proposed by Stollery and Smith (1961) is given by 

It is easily shown that this equation reduces to (16) for 0 >> 1. It is interesting to 
note that this criterion is satisfied at the position where the integrand as a whole 
hasamaximum with respect to m. For the precise criteria of Bray and of 
Stollery & Smith the reader is referred to the respective papers by these authors. 

3.2. Application of steepest-descents technique to the special case 
of hypersonic flow through a conical nozzle 

This case is one which is readily amenable to an analytical treatment, and the 
study of such a case has the advantage that the ideas outlined above can be 
reiterated in a more rigorous, but nevertheless simple, fashion. 

For x < 0 the gas is assumed to be in thermodynamic equilibrium and to be 
flowing at hypersonic speed along a constant area channel. For x 2 0 the gas is 
expanded through a conical nozzle for which the cross-sectional area ratio is 
given by A = ( 1 + ~ ) 2  (X 2 0). (17) 

9-8 
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The station r is in this case identified with the station o (both being defined by 
x = 0), and use of equation (17) and the limiting form of equations (9)-(12) for 
m,mr B 1 gives 

m m 2  A 
g(m) = 2e2-. f ( m )  = G) + 

m:) o n ( ~ , -  1) (mimr)”’ 

where n = (ya - l)-l+ 2s. Denoting m/m, by z, equation (15) becomes 

where y is a dummy variable. 
The saddle point or freezing point is given from equation (16) by 

A new variable [ is defined by 6 = z/@, and equation (18) becomes 

where N = &D,, and + is a dummy variable. The integral is now typical of those 
evaluated by the method of steepest descents provided that N2 9 1 and that the 
saddle point occurs within the range of integration. I n  order for this latter 
condition to hold, CD must be greater than unity, in which case N B 1 (since 8 9 l ) ,  
and furthermore, from equation (19)) A is a t  least of order 6. When @ < 1, the 
stationary point (freezing point) no longer occurs in the physical flow (since 
m m, everywhere). This case corresponds to near-frozen flow (A small) when 
the vibrational energy distribution never follows the equilibrium curve. 

In  general, the only significant contributions to the integral will come from a 
region of order N-l in thickness in the neighbourhood of the saddle point or 
freezing point. Within this region the integral increases sharply and there is a 
relatively large departure from equilibrium. The structure of this rapid transition 
region or boundary-layer region is analysed below. 

A new variable 7 is defined by 

?1 = w(@- 1) MMllr) -d1)}14 
where q( $) = +2 + 2InlC.n and @ = 1 is the saddle point. In  terms of 7, the usual 
steepest-descents variable, equation (20) becomes 

where 

Near the saddle point +f can be expanded in the form 

B(C) = sgn (6 - 1) [ 3 W J  - 4( 1N4. 

$72 = 1 z (+ -  1 ) 2 q ” ( l ) +  ..., 

and this series can be inverted to obtain 
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= C a,?' (say). 
r=O 

The function 

is continuous through the saddle point and bounded. As g + 00, L -+ 0; as 
7 + B(@-l) then provided CD is a t  least O( l ) ,  the function L[B@-l)] is a t  most 
O(1). Let 

where 

Upstream of the boundary-layer region the first two terms in the above expres- 
sion for I are of the same order of magnitude. It will be shown later (4 3.3) that 
in this region the solution does reduce to the near-equilibrium solution expected 
there. Within the boundary-layer region (and downstream of it) the first term 
dominates and represents the rapid departure from equilibrium which occurs 
there. Downstream of this region the error term is of a greater order of magnitude 
than the second term. Neglecting the error term in the above expression and 
using equation (SO) gives 

e = {3a, ON exp [ - N2g( l ) ] }  { E [ N B ( t ) ]  - E[NB( CD-l)]} exp (SNz/ngn) 

- 2OL[B([)] exp ( - N Z t 2 )  + 2OL[B( @-I)] exp [ - N2q( W1)] exp ( 2N2/ntn).  

( 2 1 )  

When the freezing point lies within the nozzle (i.e. CD > 11, B(CD-l) < 0, 
I N B (  @-l) I 9 1, and E[NB( W1)] can be expanded in the form 

1 
exp [ - QN2B2( @ - I ) ]  

NB(  @-I) 
E[NB(@-l)]  = - 

-- exp [ - &N2B2( W1)] 
1 

Using this expression, equation (31) simplifies slightly to 

e = {2a, ON exp [ - N2q( 1)]}E[NB(c ) ]  exp (2Nz/ntn) 

- 2OL[B([)] exp ( - N Z t 2 )  + SO ('") - - exp [ - N ~ ~ ( c D - ~ ) I  exp ( 2 ~ 2 / n t " ) .  
g dy @=I€-' 

(22 )  
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The full expressions (either (21) or (22)) are only justifiable upstream of the 
boundary-layer region.? Downstream of this region both the second and third 
terms are exponentially smaller than the error terms omitted from the above 
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FIGURE 2. Relative departure from equilibrium as a function of x for various values of N .  

equations, (the 3 term contained in 6 on the left-hand side is also exponentially 
smaller than the error terms). Within and downstream of the boundary-layer 
region, equation ( 2 2 )  can be written 

(r = 2 a , 0 N e x p { - N 2 q ( 1 ) ) { E [ N B ( ~ ) ]  exp (2N2/n(")){1 +O(N- l ) ) .  (23) 

Downstream of the ' boundary-layer ' region the error term is O(NV2) .  
In figure 2 the relative departure from equilibrium €/Cis plotted as a function of 

x for various values of N .  Note that this function approaches infinity for large x 

t In  fact the full expression (21) is justifiable wherever INB([)1 $ 1 which includes the 
case when the 'freezing' point does not occur in the nozzle, i.e. near-frozen flow (see 53.3). 
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for all finite N .  A common feature of all the curves (apart from that for 'frozen' 
flow) is that €13 remains effectively zero until the freezing point is approached 
where there is a rapid increase in the departure from equilibrium. 

Although the solution given here is for a particular temperature dependence 
of the relaxation frequency and a specific nozzle shape, i.e. particular F ( m ) ,  the 
results are applicable to a general temperature dependence and nozzle shape, i.e. 
general P(m), provided q and N are suitably reinterpreted. Scaling with respect 
to the values at the freezing point gives, in the general case 

and 

Here the suffix s denotes conditions at the freezing point (saddle point) and 
a' = m, is the solution of (16) for m. Note that it is not always possible to write 
down 0' as an explicit function of A and 8. 

3.3. Solution away from the ' freezing'  point 
Upstream of the boundary-layer region it is expected that some suitable near- 
equilibrium solution should be applicable. Alternatively if the freezing point 
does not lie in the nozzle a near-frozen solution may be valid. These solutions 
can be obtained by a straightforward expansion of the integral in equation (18). 
This equation can be written 

where f,(y) = f (ym,) = y2+A/y%8(ya- 1). Assuming that the point defined by 
f ;(y) = 0 does not lie within the range of integration, integration by parts gives 

The condition 15f;(z)~ % 1 is equivalent to N2q'(t)2 $ 1 which implies that the 
flow never passes through the freezing point. This does not necessarily mean that 
the analysis is valid only upstream of the boundary-layer region since in some 
cases the freezing point does not lie in the nozzle, though the above condition 
may be valid (the error term is then O(l/S)). Expanding (24) and neglecting 
smaller order terms gives 

Note that equation (21) reduces to equation (25 )  when INB(C)I 9 1 which is 
again equivalent to conditions holding either upstream of the boundary-layer 
region or when the freezing point does not lie in the nozzle. The solution (21) can 
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be regarded as rendering (25), which has a singularity at the freezing point, 
uniformly valid throughout the whole flow region. 

In  the case which corresponds to conditions upstream of the boundary-layer 
region, A 

- B 2, O(ya - 1)  Z"+2 

(this condition implies that A is very large) and equations (25) or (21) reduce to 

In  order to retain the correct behaviour near z = 1 (see appendix) both terms 
inside the square bracket must be retained, but for z sufficiently greater than 
unity (in fact outside a region near z = 1 whose thickness is O(l/A)) the first 
term dominates and 

or alternatively 
1 

€ = (-%) , 
which is the usual near-equilibrium solution obtained by a formal expansion in 
powers of 1/R (see appendix). Note again that since (21) reduces to (25) upstream 
of the boundary-layer region these conclusions can be deduced from (2 1)  which is 
also valid within the boundary-layer region. 

In  the limiting case when the freezing point does not occur in the nozzle, 

and this corresponds to near-frozen flow. Either equation (25) or equation (21) 
reduces to 

In this case, away from z = 1, the first term inside the square brackets dominates 
and for A < 1 an expansion in powers of A can be inferred. To obtain the correct 
behaviour near z = 1 both terms must be retained and for A < 1 

or 

which is the usual near-frozen flow solution (see appendix). 

3.3. Asymptotic solution 

As x, z -+ 00, @ + 0 exponentially fast and for large z the rate equation takes the 
form 
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which on integration gives (in terms of the variable E )  
(T = C exp ( 2N2/ntn). 

The constant C is equal to the final asymptotic frozen value far downstream. 
We wish to determine this constant in terms of the conditions at the freezing 
point. I n  general from equation (20) it  is seen that 

2 
C = 2BN2 $ exp ( - N2( $2 + -)) d$. 

nzl." 

[= 1 5 
FIGURE 3. Various solution regimes (schematic). 

Applying the steepest-descents analysis, assuming that the freezing point lies in 
the nozzle (so that @ > l), gives 

C = 2(27r)*a0BNexp{ -N2q(1)}{1 +O(N-2)) .  (31) 

This can be re-expressed in terms of the equilibrium conditions a t  the freezing 
point in either of the forms 

C = 2 ,/( 277) (xo NZs exp ( - 2N2/n) { 1 + O(N-2)} ,  (32a) 

or ( 3 2 6 )  

Alternatively the constant can be expressed in terms of the actual value of the 
vibrational energy a t  the freezing point (rather than its equilibrium value there), 
i.e. C = 2us exp ( - 2N2/n) { 1 + O(N-2)} .  

It is apparent that in order to obtain the correct asymptotic solution from 
equation (30) a boundary condition of the form u = O(5,) a t  the freezing point 

(33 c )  
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is not applicable, the correct boundary condition being of the form (T = O(N3,) ;  
that is to say the asymptotic solution cannot be matched directly to the equi- 
librium solution at  the freezing point (see figure 3). Moreover, the final frozen 
value is also not O(3,) but O ( 3 ,  N exp { - 2NZjn)). The discrepancy between these 
results and the matching procedure used by Bray (1959) is discussed in the next 
section. 

4. Concluding remarks 
The criterion for the onset of freezing was found to be of the same form 

(equation (16)) as that derived by Bray (1959) from qualitative arguments for 
the dissociation case. It was shown that it is not correct to match the asymptotic 
solution directly to the equilibrium solution at the freezing point; the final 
frozen value was found to be O(77, N exp { - 2Nz/n}) .  These latter results are not 
in agreement with the assumption, made by Bray for dissociation, that the 
asymptotic solution can be correctly represented by the equilibrium value at the 
freezing point (see figure l), though Bray did find that for dissociation there was 
reasonable agreement between his exact numerical solution and his approximate 
solution insofar as the final frozen value was concerned. However, because of 
fundamental differences in the asymptotic forms of the rate equations for 
vibration and dissociation the final frozen values in the respective cases will 
probably be of different orders of magnitude and the two cases are not directly 
comparable. For vibrational relaxation the asymptotic form of the rate equation 
is, as already pointed out above dgldrn = - AFu, and the solution of this equation 
decays exponentially to the final frozen value. For dissociation the equivalent 
form is daldm = - AFa2, where a is the dissociation fraction. This equation has 

a solution of the form 1 rm 
f = const.-j ~ AFdm. 
a m 

The manner of approach to the final frozen value is not so severe as in the vibra- 
tional case. Before the question regarding the final frozen value in this case can 
be answered a detailed investigation of the full rate equation for dissociation is 
necessary. Under similar assumptions to those used above (i.e. a < 1)  this rate 
equation has the form 

da 
- = AF(m) (E2(m) - a2). 
dm 

As pointed out by Freeman (1959) this equation is a Ricatti equation and by a 
suitable transformation can be reduced to a second-order linear equation with 
known coefficients. 

An alternative approach to obtain conditions near the freezing point can be 
made via the differential equation for €13. This equation can be writ.ten (in the 
linear case) as 

1 dcr AF(m) + = _. = = - - - 
dm u dm 

and it can be seen that the coefficient of €15 vanishes at  the freezing point. The 
behaviour in the region of the freezing point can be deduced by considering the 
behaviour of this equation in the vicinity of this zero and the asymptotic solution 
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can be derived by application of a suitable limiting procedure. This approach is 
of course equivalent to the steepest-descents analysis in the linear case, but it is 
hoped that such an approach, applied to the non-linear case, will yield some 
useful information on the correct form of the asymptotic solution. 

In  general the sonic point does not occur at the physical throat in a relaxing 
flow. In so far as the present approximation is concerned the sonic point is fixed 
at the throat since the basic flow is taken to be that corresponding to fl = 0. 
Higher approximations to the theory, i.e. the perturbation to the flow field, have 
been considered by Freeman (1962) who has derived the variation with A of the 
position of the sonic throat and also the dependence of the mass flow on the rate 
parameter. 

The author is indebted to Dr N. C. Freeman for many helpful discussions. 
This paper is published by permission of the Director, National Physical 

Laboratory. 

Appendix. Near-equilibrium and near-frozen solutions 
Near-equilibrium and near-frozen one-dimensional flows have been treated 

extensively by Bloom & Ting (1960). A near-equilibrium solution can be formally 
derived by seeking a solution of the form (A 9 1) 

€1 €2 E = -+-+ .... 
A A2 

Substitution into equation (13) gives 

1 
€ = (-%) f ...) 

which is in agreement with the expression (27) derived in the main text. However, 
this solution cannot remain valid up to and including m = m, since at  this point 
dr ldm = 0 but dZ/dm is finite. The correct behaviour there can be deduced from 
(13) by solving this equation for m near to m,. This solution can be written 

1 
E = AF, __ ( -~),[l-exp{-AF,(rn-m,)jl.  

The exponential term is only important in a region near z = mlm, = 1 whose 
thickness is O( l/A) (with respect to z). Outside this region the usual approach of 
seeking a solution in the form of an expansion in powers of l /A  is valid (except 
near the freezing point). 

A near frozen solution can be obtained by an expansion of the form (A Q 1) 

which gives 
E = EO+AE'+ ..., 

€0 = Z,--@) 

i.e. 
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For 0 1 the error term can be neglected and 

or 

which is in agreement with equation (29) in the main text. 
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